Massively parallel determination and modeling of endonuclease substrate specificity
نویسندگان
چکیده
We describe the identification and characterization of novel homing endonucleases using genome database mining to identify putative target sites, followed by high throughput activity screening in a bacterial selection system. We characterized the substrate specificity and kinetics of these endonucleases by monitoring DNA cleavage events with deep sequencing. The endonuclease specificities revealed by these experiments can be partially recapitulated using 3D structure-based computational models. Analysis of these models together with genome sequence data provide insights into how alternative endonuclease specificities were generated during natural evolution.
منابع مشابه
InDel assembly: A novel framework for engineering protein loops through length and compositional variation
Insertions and deletions (indels) are known to affect function, biophysical properties and substrate specificity of enzymes, and they play a central role in evolution. Despite such clear significance, this class of mutation remains an underexploited tool in protein engineering with no available platforms capable of systematically generating or analysing libraries of varying sequence composition...
متن کاملMassively parallel characterization of restriction endonucleases
Restriction endonucleases are highly specific in recognizing the particular DNA sequence they act on. However, their activity is affected by sequence context, enzyme concentration and buffer composition. Changes in these factors may lead to either ineffective cleavage at the cognate restriction site or relaxed specificity allowing cleavage of degenerate 'star' sites. Additionally, uncharacteriz...
متن کاملFunctional importance of Crenarchaea-specific extra-loop revealed by an X-ray structure of a heterotetrameric crenarchaeal splicing endonuclease
Archaeal splicing endonucleases (EndAs) are currently classified into three groups. Two groups require a single subunit protein to form a homodimer or homotetramer. The third group requires two nonidentical protein components for the activity. To elucidate the molecular architecture of the two-subunit EndA system, we studied a crenarchaeal splicing endonuclease from Pyrobaculum aerophilum. In t...
متن کاملMassively parallel enzyme kinetics reveals the substrate recognition landscape of the metalloprotease ADAMTS13.
Proteases play important roles in many biologic processes and are key mediators of cancer, inflammation, and thrombosis. However, comprehensive and quantitative techniques to define the substrate specificity profile of proteases are lacking. The metalloprotease ADAMTS13 regulates blood coagulation by cleaving von Willebrand factor (VWF), reducing its procoagulant activity. A mutagenized substra...
متن کاملEndonuclease Specificity and Sequence Dependence of Type IIS Restriction Enzymes
Restriction enzymes that recognize specific sequences but cleave unknown sequence outside the recognition site are extensively utilized tools in molecular biology. Despite this, systematic functional categorization of cleavage performance has largely been lacking. We established a simple and automatable model system to assay cleavage distance variation (termed slippage) and the sequence depende...
متن کامل